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Abstract. We consider the lowest order radiative corrections for the decay K± → π0e±ν, usually referred
to as K±

e3 decay. This decay is the best way to extract the value of the Vus element of the CKM matrix.
The radiative corrections become crucial if one wants a precise value of Vus. The existing calculations
were performed in the late 60’s and are in disagreement. The calculation by Ginsberg turns out to be
ultraviolet cutoff sensitive. The necessity of precise knowledge of Vus and the contradiction between the
existing results constitute the motivation of our paper.
We remove the ultraviolet cutoff dependence by using Sirlin’s prescription; we set it equal to the W mass.
We establish the whole character of the small lepton mass dependence based on the renormalization group
approach. In this way we can provide a simple explanation of Kinoshita–Lee–Nauenberg cancellation of
singularities in the lepton mass terms in the total width and pion spectrum. We give an explicit evaluation
of the structure-dependent photon emission based on ChPT in the lowest order. We estimate the accuracy of
our results to be at the level of 1%. The corrected total width is Γ = Γ0(1+δ) with δ = 0.02±0.0002. Using
the form factor value f+(0) = 0.9842±0.0084 calculated by Cirigliano et al. leads to |Vus| = 0.2172±0.0055.

1 Motivation

For corrections due to virtual photons, see Fig. 1; for cor-
rections due to real photons, see Fig. 2.

The Ke3 decay is important since it is the cleanest way
to measure the Vus matrix element of the CKM matrix.
If one uses the current values for Vud, Vus, and Vub taken
from the PDG then |Vud|2 + |Vus|2 + |Vub|2 misses unity by
2.2 standard deviations, which contradicts the unitarity of
the CKM matrix and might indicate physics beyond the
standard model. The uncertainty brought to the above ex-
pression by Vus is about the same as the uncertainty that
comes from Vud. Therefore, reducing the error in the Vus

matrix element would substantially reduce the error in the
whole unitarity equation. Reliable radiative corrections,
potentially of the order of a few percent, are necessary to
extract the Vus matrix element from the Ke3 decay width
with high precision.

Calculations of the radiative corrections to the Ke3 de-
cay were performed independently by Ginsberg and
Becherrawy in the late 60’s [2,1]. Their results for cor-
rections to the decay rate, Dalitz plot, pion and positron
spectra disagree, in some places quite sharply; for example
Ginsberg’s correction to the decay rate is −0.45%, while
that of Becherrawy is −2% (corresponding to corrections
to the total width Γ of 0.45 and 2 respectively). We have
decided to perform a new calculation since the results of
the experiments will become available soon and we want
to explore the causes of the discrepancies in the previ-

Fig. 1a–f. Virtual photons

Fig. 2a–c. Real photons

ous calculations. Recently a revision of Ginsberg’s paper,
with a numerical estimation of the radiation corrections
[14] was published.

Our paper is organized as follows. The introduction
(Sect. 2) is devoted to a short review of the kinematics of
the elastic decay process (without emission of a real pho-
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ton). In Sect. 3 we face the results concerning the virtual
and soft real photons’ emission contribution to the differ-
ential width. In Sect. 4 we consider the hard photon emis-
sion including both the inner bremsstrahlung (IB) and the
structure-dependent (SD) contributions and derive an ex-
pression for the differential width by starting with the
Born width and adding the known structure functions
in the leading logarithmical approximation (the so-called
Drell–Yan picture of the process). We give the explicit ex-
pressions for the non-leading contributions. In Sect. 5, we
summarize our results and compare them with those in
the previously published papers.

Appendix A contains the details of the calculations of
virtual and real soft photon emission.

Appendix B contains the details of the description of
hard photon emission both by the IB and the SD mecha-
nism. Our approach to the study of hard photon emission
differs technically from the ones used in [1,2].

Appendix C contains the explicit formulae for the de-
scription of SD emission including the interference of IB
and SD amplitudes.

Appendix D is devoted to an analysis of the Dalitz-plot
distribution and the properties of the Drell–Yan conver-
sion mentioned above.

Appendix E contains a list of the formulae used for the
numerical integration.

Appendix F contains the details of the kinematics of
radiative kaon decay and, besides the analysis of relations
of our paper and [2], technical approaches.

In Tables 1 and 2 and Figs. 3, 4, 5 and 6 the result
of the numerical estimation of the Born values and the
correction to the Dalitz-plot distribution and pion and
positron spectra are given.

2 Introduction

The lowest order perturbation theory (PT) matrix ele-
ment of the process K+(p) → π0(p′) + e+(pe) + ν(pν) has
the form

M =
GF√

2
V ∗

usFν(t)ū(pν)γν(1 + γ5)v(pe), (1)

where Fν(t) = (1/21/2)(p + p′)νf+(t). The Dalitz-plot
density which takes into account the radiative corrections
(RC) of the lowest order PT is

d2Γ

dydz
= Ca0(y, z)(1 + δ(y, z))

(
1 + λ+

t

m2
π

)2

=
d2Γ0(y, z)

dydz
(1 + δ(y, z)),

Γ0 =
∫

d2Γ0

dydz
dydz, Γ =

∫
d2Γ

dydz
dydz, (2)

where the momentum transfer squared between kaon and
pion is

t = (p − p′)2 = M2
K(1 + rπ − z) = M2

KR(z).

We accept here the following form for the strong interac-
tions induced form factor f+(t):

f+(t) = f+(0)
(

1 + λ+
t

m2
π

)
, (3)

according to PDG λ+ = 0.0276±0.0021. From now on we
will use M2 instead of M2

K . We define

C =
M5G2

F|Vus|2
64π3 |f+(0)|2 (4)

and

a0(y, z) = (z + y − 1)(1 − y) − rπ + O(re). (5)

Here we follow the notation of [4]:

re ≡ m2
e/M

2, rπ ≡ m2
π/M2, (6)

where me, mπ, and MK are the masses of electron, pion,
and kaon; two convenient kinematical variables are

y ≡ 2ppe/M
2, z ≡ 2pp′/M2. (7)

In the kaon’s rest frame, which we will imply throughout
the paper, y and z are the energy fractions of the positron
and pion:

y = 2Ee/M, z = 2Eπ/M. (8)

The region of the y, z-plane where a0(y, z) > 0 will be
named region D. Later, when dealing with real photons
we will also use

x = 2ω/M, (9)

with ω the real photon energy.
The physical region for y and z (further called the D

region) is [4]

2
√

re ≤ y ≤ 1 + re − rπ,

F1(y) − F2(y) ≤ z ≤ F1(y) + F2(y),
F1(y) = (2 − y)

× (1 + re + rπ − y)/ [2(1 + re − y)] ,

F2(y) =
√

y2 − 4re

× (1 + re − rπ − y)/ [2(1 + re − y)] , (10)

or, equivalently,

2
√

rπ ≤ z ≤ 1 + rπ − re,

F3(z) − F4(z) ≤ y ≤ F3(z) + F4(z),
F3(z) = (2 − z)

× (1 + rπ + re − z)/[2(1 + rπ − z)],

F4(z) =
√

z2 − 4rπ

× (1 + rπ − re − z)/[2(1 + rπ − z)]. (11)

For our aims we use the simplified form of the physical
region (omitting the terms of the order of re):

2
√

re ≤ y ≤ 1 − rπ, c(y) ≤ z ≤ 1 + rπ, (12)
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with

c(y) = 1 − y +
rπ

1 − y
,

or
2
√

rπ ≤ z ≤ 1 + rπ, b−(z) ≤ y ≤ b(z), (13)

with

b−(z) = 1 − 1
2

(
z +

√
z2 − 4rπ

)
,

b(z) = 1 − 1
2

(
z −

√
z2 − 4rπ

)
.

For definiteness we give here the numerical value for
the Born total width. It is

G2
FM5

K |Vusf+(0)|2
64π3

∫
dy

∫
dza0(y, z)

(
1 + λ+

t

m2
π

)2

= 5.36|Vusf+(0)|2 × 10−14 MeV. (14)

Comparing this value with the PDG result, (ΓK+e3)exp =
(2.56 ± 0.03) × 10−15 MeV, we conclude

(Vusf+(0))|α=0 = 0.218 ± 0.002. (15)

3 Virtual and soft real photon emission

Taking into account the accuracy level of 0.1% for the de-
termination of ρ/ρ0 we will drop terms of order re. We
will distinguish three kinds of contributions to δ: from the
emission of virtual, soft real, and hard real photons in the
rest frame of the kaon: δ = δV + δS + δH. A standard cal-
culation (see Appendix A for details) allows one to obtain
the following contributions: from the soft real photons

δS =
α

π

{
(Le − 2) ln

2∆ε

λ
+

1
2
Le − 1

4
L2

e + 1 − π2

6

}
× (1 + O(re)) , (16)

from the virtual photons δV = δC + δPLM that make up
a charged fermion’s renormalization, δC (throughout this
paper we use the Feynman gauge):

δC =
α

2π

{[
−1

2
LΛ +

3
2

ln re + ln
M2

λ2 − 9
4

]

+
[
LΛ + ln

M2

λ2 − 3
4

]}
; (17)

here LΛ = ln(Λ2/M2), Λ is the ultraviolet momentum
cutoff, the first term in the curly braces comes from the
positron, the second one from the kaon; and for the dia-
gram in Fig. 1f in the point-like meson (PLM) approxima-
tion, δPLM:

δPLM = − α

2π

{
− LΛ − 1

2
ln2 re − 2Le + ln

M2

λ2 Le − 1

+ 2 ln2 y + 2 ln y + 2Li2(1 − y)

}
. (18)

When these contributions are grouped all together the de-
pendence on λ (the fictitious “photon mass”) disappears.
According to Sirlin’s prescription [7] we set Λ = MW . The
result can be written in the form

1 + δS + δC + δPLM

= SW

[
1 +

α

π

[
(Le − 1)

(
ln∆ +

3
4

)
− ln∆

− π2

6
+

3
4

− Li2(1 − y) − 3
2

ln y

]]
,

SW = 1 +
3α

4π
LW . (19)

In the above equations Le = 2 ln y + ln(1/re), and LW =
ln(M2

W /M2); MW is the mass of W±, ∆ = ∆ε/Ee, and
∆ε is the maximal energy (in the rest frame of the kaon)
of a real soft photon. We imply ∆ε � M/2. For the details
of (16), (17), (18), and (19) see Appendix A.

The contribution from soft photon emission from the
structure-dependent part (such as for example, interaction
with resonances and intermediate W±) is small, of the
order

α

π

∆ε

M
� 1,

and thus is also neglected.

4 Hard photon emission.
Structure function approach

Next we need to calculate contributions from hard pho-
tons. We have to distinguish between inner bremsstrahl-
ung (IB) and the structure-dependent (SD) contributions:
δH = δIB + δint + δSD, where δint is the interference term
between the two. The terms δint and δSD are considered in
the framework of the chiral perturbation theory (ChPT)
to the orders of (p2) and (p4) and find their contribution
to be at the level of 0.2% (see Appendix C). We have

δH =
α

2πa0(y, z)

×
{

(Le − 1)
(

Ψ(y, z) − a0(y, z)
(

2 ln∆ +
3
2

))

− 2a0(y, z) ln
b(z) − y

y∆

}
+ δhard, (20)

with δhard given below.
Extracting the short-distances contributions in the

form of the replacement C → CSW it is useful to split
δ (see (2)) in the form

δ(y, z) = δL + δNL, (21)

where δL is the leading order contribution; it contains the
“large logarithm” Le, and δNL is the non-leading contri-
bution; it contains the rest of the terms.
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δL contains terms from δC, δS, δPLM, and the contri-
bution from the collinear configuration of hard IB emis-
sion (in the collinear configuration the angle between the
positron and the emitted photon is small). δL turns out to
be

δL =
α(Le − 1)
2πa0(y, z)

Ψ(y, z). (22)

First we note that the kinematics of hard photon emis-
sion does not coincide with the elastic process (region
D, the strictly allowed boundaries of the Dalitz plot).
In hard photon emission an additional region in the y, z-
plane, namely y < b−(z) appears. The nature of this phe-
nomenon is the same as the known phenomenon of the
radiative tail in the process of hadron production at col-
liding e+e− beams.

The quantity Ψ(y, z) has a different form for region D
and outside it:

Ψ(y, z) = Ψ>(y, z), z > c(y), 2
√

re < y < 1 − rπ,
(23)

and

Ψ(y, z) = Ψ<(y, z), z < c(y), 2
√

re < y < 1 − √
rπ.
(24)

Ψ<(y, z) = 0 when y > 1 − r
1/2
π . The functions Ψ<, Ψ> are

studied in Appendix D.
δNL contains contributions from δC, δPLM, from the

SD part of hard photons and from the interference term
of the SD and IB parts of the hard radiation. We have

δNL =
α

π
η(z, y), (25)

where

α

π
η(y, z) = δhard +

α

π

[
3
4

− π2

6
− Li2(1 − y) − 3

2
ln y

− ln((b(z) − y)/y)

]
, (26)

and for the case when the variables y, z are inside the D
region:

δhard =
α

2πa0(y, z)
Z2(y, z); (27)

Z2(y, z) = −2Rphot1D(y, z) + Rphot2D(y, z)

+

b(z)−y∫
0

dxJ (x, y, z). (28)

Explicit expressions for Rphot1,2 and J are given in Ap-
pendix B. The Born value and the correction to the Dalitz-
plot distribution ∆(y, z) = δ(y, z)a0(y, z) is illustrated in
Tables 1 and 2.

We see that the leading contribution from virtual and
soft photon emission is associated with the so-called δ-part
of the evolution equation kernel:

(δC + δS + δPLM)leading

=
α

2π
(Le − 1)

∫
a0(t, z)
a0(y, z)

P
(1)
δ

(y

t

) dt

t
, (29)

where

P
(1)
δ (t) = δ(1 − t)

(
2 ln∆ +

3
2

)
. (30)

The contribution of the hard photon kinematics in the
leading order can be found with the method of quasi-real
electrons [10] as a convolution of the Born approximation
with the θ-part of the evolution equation kernel Pθ(z):

δleading
H ∼ α

2π
(Le − 1)

∫
dt

t

a0(t, z)
a0(y, z)

P
(1)
θ

(y

t

)
, (31)

where

P
(1)
θ (z) =

1 + z2

1 − z
θ(1 − z − ∆). (32)

In such a way the whole leading order contribution can be
expressed in terms of the convolution of the width in the
Born approximation with the whole kernel of the evolution
equation:

P (1)(z) = lim
∆→0

(
P

(1)
δ (z) + P

(1)
θ (z)

)
. (33)

This approach can be extended to the use of non-
singlet structure functions D(t, y) [9]:

dΓLO(y, z) =

b(z)∫
max[y,b−(z)]

dt

t
dΓ0 (t, z) D

(y

t
, Le

)
,

t = x + y,

D(z, L) = δ(1 − z) +
α

2π
LP (1)(z)

+
1
2!

(
αL

2π

)2

P (2)(z) + ..., (34)

P (i)(z) =

1∫
z

dx

x
P (1)(x)P (i−1)

( z

x

)
, i = 2, 3, ...

One can check the validity of the useful relation

1∫
0

dzP (1)(z) = 0. (35)

The above makes it easy to see that in the limit me → 0
terms that contain me do not contribute to the total width
in correspondence with the Kinoshita–Lee–Nauenberg
(KLN) theorem [12] as well as with results of Ginsberg
[2]. Keeping in mind the representation

Ψ(y, z) =

b(z)∫
max[y,b−(z)]

dt

t
a0(t, z)P (1)

(y

t

)
, (36)

one can get convinced (see Appendix D) that the leading
logarithmical contribution to the total width as well as
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the one to the pion spectrum is zero due to

1+rπ∫
2
√

rπ

dz

b(z)∫
0

dyΨ(y, z) = 0. (37)

Using the general properties of the evolution equations
kernels, (34), one can see that KLN cancellation will take
place in all orders of the perturbation theory. The spectra
in Born approximation are (we omit terms O(re) ∼ 10−6)
for the pion

1
C

dΓ0

dz
= φ0(z),

φ0(z) =
(

1 +
λ+

rπ
R(z)

)2
b(z)∫

b−(z)

dya0(y, z)

=
(

1 +
λ+

rπ
R(z)

)2 1
6
(
z2 − 4rπ

)3/2
, (38)

and for the positron

f(y) =
1
C

dΓ0

dy
f0(y)

[
1 +

2
3

(
λ+

rπ

)
y(1 − rπ − y)

1 − y

+
1
6

(
λ+

rπ

)2
y2(1 − rπ − y)2

(1 − y)2

]
, (39)

f0(y) =
y2(1 − rπ − y)2

2(1 − y)
. (40)

The corrected pion spectrum in the inclusive set-up of
the experiment when integrating over the whole region for
y (0 < y < b(z)) has the form φ0(z) + (α/π)φ1(z) with

φ1(z) =
(

1 +
λ+

rπ
R(z)

)2

×




b−(z)∫
0

dy

[
Ψ<(y, z) ln y − a0(y, z) ln

b(z) − y

b−(z) − y

+
1
2
Z̃2(y, z)

]

+

b(z)∫
b−(z)

dy

[
Ψ>(y, z) ln y + a0(y, z)Z1(y, z)

+
1
2
Z2(y, z)

] ; (41)

the quantities Z1, Z̃2 are explained in Appendix E. This
function does not depend on ln(1/re). The pion spectrum
in the exclusive set-up (y, z in the region D) will depend
on Le. Its expression is given in Appendix E.

The numerical estimation of the pion spectrum is il-
lustrated in Figs. 3 and 5.

The inclusive positron spectrum with the correction
of the lowest order is f(y) + (α/π)f1(y) with f(y) given
above and

f1(y) =
1
2

(Le − 1) I(y)

−
1+rπ∫
c(y)

a0(y, z)
(

1 +
λ+

rπ
R(z)

)2

ln((b(z) − y)/y)dz

+
(

3
4

− π2

6
− 3

2
ln y − Li2(1 − y)

)
f(y)

+
1
2

1+rπ∫
c(y)

Z2(y, z)
(

1 +
λ+

rπ
R(z)

)2

dz

+ θ(1 − √
rπ − y)

c(y)∫
2
√

rπ

dz

(
1 +

λ+

rπ
R(z)

)2

×
[
(1/2)Z̃2 − a0(y, z) ln

b(z) − y

b−(z) − y

]
, (42)

with

I(y) = j0(y) +
(

λ+

rπ

)
j1(y) +

(
λ+

rπ

)2

j2(y), (43)

j0(y) =

1−rπ∫
y

dt

t

1+rπ∫
c(t)

dza0(t, z)P (1)
(y

t

)

=
(

2 ln
1 − rπ − y

y
+

3
2

)
f0(y)

+
r2
π(1 + y2)
2(1 − y)

ln
1 − y

rπ

+
1
12

(1 − rπ − y) (44)

× [1 − 5rπ − 2r2
π + y(4 − 13rπ) − 17y2];

explicit expressions for j1(y) and j2(y) are given in Ap-
pendix D.

Numerical estimation of positron spectrum is illus-
trated in Figs. 3 and 6.

One can check the fulfillment of KLN cancellation of
singular terms in the limit me → 0 for the total width cor-
rection:

∫ 1−rπ

0 I(y)dy = 0. The expression for j0(y) agrees
with A(2) from the paper of Ginsberg in the year 1966 [2].

We put here the general expression for the differential
width of hard photon emission, which might be useful for
the construction of Monte Carlo simulation of real photon
emission in Ke3:

dΓ hard
γ = dΓ0

α

2π

dx

x

dOγ

2πa0(y, z)
T, (45)

with
x =

2ω

M
>

2∆ε

M
= y

∆ε

Ee
,

∆ε

Ee
� 1; (46)

and dOγ is an element of the photon’s solid angle. The
quantity T is explained in Appendix B.
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For soft photon emission we have

dΓ soft
γ = dΓ0

α

2π

dx

x

dOγ

2π
(47)

×
[
−1 − re

(1 − βeCe)2
+

y

1 − βeCe

]
, x < y

∆ε

Ee
.

Integrating over angles within the phase volume of the
hard photon we obtain the spectral distribution of radia-
tive kaon decay:

dΓ

dΓ0dx
=

α

2π

1
a0(y, z)

×
[
a0(x + y, z)
x(x + y)2

(
(y2 + (x + y)2)(Le − 1) + x2)

− 2
x

a0(y, z) − 2
(

R(z)
x + y

− y

)
+ J (x, y, z)

]
,

y∆ < x < b(z) − y, ∆ =
∆ε

Ee
� 1. (48)

5 Discussion

The structure-dependent contribution to the emission of
virtual photons (see Fig. 1d,e) can be interpreted as a cor-
rection to the strong form factor of the Kπ transition,
f+(t). We assume that this form factor can be extracted
from experiment and thus do not consider it. The problem
of the calculation of RC to Ke3 and especially the form
factors in the framework of CHpT with virtual photons
was considered in a recent paper [14].

As in paper [2] we assume a phenomenological form
for the hadronic contribution to the K–π vertex, but here
we use explicitly the dependence of the form factor in the
form

f+(t) = f+(0)
(

1 +
λ+

rπ
R(z)

)
. (49)

We assume that the effect of higher order ChPT as well
as RC to the form factors can be taken as a multiplicative
scaling factor for f+(0), which we take from a recent paper
[14].

We assume an experiment in which only one positron
in the final state is present, but place no limits on the
number of photons. The ratio of the LO contributions to
the Born contribution in the first order is a few percent,
and for the second order it is about(

αLe

2π

)2

≤ 0.03%. (50)

Due to the non-definite sign structure of the leading loga-
rithm contribution (see (22)) there are regions in the kine-
matically allowed area where |Ψ(y, z)| is close to zero. In
these regions the non-leading contributions become dom-
inant.

The contribution of the channels with more than one
charged lepton in the final state as well as the vacuum

polarization effects in higher orders may be taken into ac-
count by introducing the singlet contribution to the struc-
ture functions. The effect will be at the level of 0.03% and
we omit them within the precision of our calculation.

The contribution of the O(p4) terms [5] turns out to
be small. Indeed, one can see that they are of the or-
der O(αLr

9, (p̄/Λc)2) ≤ O(10−2%), Λc = 4πFπ ≈ 1.2 GeV
(Fπ = 93 MeV is the pion life time constant), where p̄
is the characteristic momentum of a final particle in the
given reaction, p̄2 ≤ M2/16 ∼ F 2

π . So the terms of the or-
ders O(p4) and O(p6) can be omitted within the accuracy
of O

(
(α/π) × 10−2

) ≤ O
(
10−4

)
.

Our main results are given in (2), (21), (22), (26)–(28)
for the Dalitz-plot distribution; (37)–(40) for the pion and
positron spectra; (46) for hard photon emission; (52) for
the value |Vus|, in the tables and figures. The accuracy of
these formulas is determined by the following:
(1) we do not account higher order terms in PT, the ones
of the order of (αLe/π)n, n ≥ 2 which is smaller than
0.03%;
(2) the structure-dependent real hard photon emission
contribution to RC we estimate to be at the level of 0.0005;
(3) higher order CHPT contributions to the structure-
dependent part are of the order 0.05% [4,5].

All the percentages are taken with respect to the Born
width. All together we believe the accuracy of the results
to be at the level of 0.01. So the final result of our calcu-
lation may be written in the form

Γ

Γ0
= (1 + δ(1 ± 0.01)) ; (51)

the terms on the r.h.s. are given in (21), (22) and (25).
Here is the list of improvements comparing with the

older calculations [1,2]:
(1) we eliminate the ultraviolet cutoff dependence by
choosing Λ = MW ;
(2) we describe the dependence on the lepton mass log-
arithm Le in all orders of the perturbation theory and
explain why the correction to the total width does not
depend on me;
(3) we treat the strong interaction effects by means of
CHPT in its lowest order O(P 2) and show that the next
order contribution is small;
(4) we give explicit formulas for the total differential cross
section and explicit results for the corrections to the Dalitz
plot and particle spectra that might be used in an exper-
imental analysis.

In the papers of Ginsberg the structure-dependent
emission was not considered. Becherrawy, on the other
hand, did include it, and this will give rise to differences
in the Dalitz plot. In addition, Ginsberg used the proton
mass as the momentum cutoff parameter.

We do not consider the evolution of coupling constant
effects in the regions of virtual photon momentum mod-
ulo square from the quantities of order M2

ρ up to M2
Z ,

which can be taken into account [11] (and for details see
[14]) by replacing the quantity SW by the SEW = 1 +
(α/π) ln(M2

Z/M2
ρ ) = 1.0232. Taking this replacement into
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Fig. 3. Pion spectrum in Born approximation, φ0(z) (see (39))

Fig. 4. Positron spectrum in Born approximation, f(y) (see
(39))

account our result for the correction to the total width is

Γ

Γ0
= 1 + δ = 1.02, (52)

which results in

|Vusf+(0)| = 0.214 ± 0.002. (53)

So the correction to the total width is +2% while Gins-
berg’s result is −0.45% and Becherrawy’s result is −2%.
Neither Ginsberg nor Becherrawy used the factor SEW,
and this factor (1.023) accounts for most of the difference
between Ginsberg’s and our result. Electromagnetic cor-
rections become negative and have an order of 10−3. The
effect of the SD part, which Ginsberg did not consider, is
small: of the order of 0.1%.

We use the value of the form factor f+(0) = 0.9842 ±
0.0084 calculated in [14] in the framework of ChPT, in-
cluding virtual photonic loops and terms of order O(p6) of
ChPT. To avoid double counting we use the mesonic con-
tribution to fmes

+ (0) = 1.0002 ± 0.0022 and the p6 terms
one f+(0)|p6 = −0.016 ± 0.0008. Our final result is

|Vus| = 0.21715 ± 0.0055. (54)

In estimating the uncertainty we take into account the un-
certainties arising from the structure-dependent emission

Fig. 5. Correction to pion spectrum, φ1(z) (see (39))

Fig. 6. Correction to positron spectrum, f1(y) (see (40))

±0.005, theoretical errors of order ±0.0003, the experi-
mental error ±0.0022 and the ChPT error in the p6 terms
0.0008.

In Tables 1 and 2 we give corrections to the distri-
butions in the Dalitz plot dΓ/(dydz) ∼ a0(y, z) + (α/π)
∆(y, z).

In Figs. 3–6 we illustrate the corrections to the pion
and positron spectra. Here we see qualitative agreement
for the positron spectrum and disagreement with the pion
spectrum obtained by Ginsberg.
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Appendix A

Here we explain how to calculate δS, δC, δPLM and how to
group them into (19).

The contribution from emission of a soft real photon
can be written in a standard form in terms of the classical
currents:
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Table 1. Correction to Dalitz-plot distribution ∆(y, z) = a0(y, z)δ(y, z) × 103 (see (2))

z/y 0.07 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

1.025 3.83 4.37 3.71 2.01 −0.21 −2.47 −4.31 −5.11 −3.81
0.975 3.76 3.49 2.07 0.05 −2.07 −3.83 −4.61 −3.35
0.925 3.26 2.13 0.32 −1.67 −3.35 −4.11 −2.88
0.875 3.04 2.18 0.58 −1.26 −2.86 −3.60 −2.39
0.825 2.25 0.85 −0.86 −2.37 −3.08 −1.88
0.775 1.14 −0.41 −1.83 −2.51 −1.28
0.725 1.39 −0.04 −1.39 −2.03 −0.72
0.675 0.38 −0.86 −1.48
0.625 −0.35 −0.89
0.580 −0.23

Table 2. Dalitz-plot distribution in Born approximation a0(y, z)

z/y 0.07 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

1.025 0.0084 0.069 0.126 0.163 0.181 0.178 0.156 0.114 0.051
0.975 0.026 0.089 0.131 0.153 0.156 0.139 0.101 0.0437
0.925 0.051 0.099 0.126 0.134 0.121 0.088 0.036
0.875 0.014 0.066 0.099 0.111 0.104 0.076 0.029
0.825 0.0337 0.071 0.089 0.086 0.064 0.021
0.775 0.043 0.066 0.069 0.051 0.014
0.725 0.016 0.044 0.051 0.039 0.006
0.675 0.021 0.034 0.026
0.625 0.016 0.014
0.580 0.003

δS = − 4πα

(2π)3

∫
d3q

2ω

(
p

p · q
− pe

pe · q

)2
∣∣∣∣∣
ω=

√
q̄2+λ2<∆ε

,

(55)
where λ is the fictitious mass of the photon. We use the
following formulas:

1
2π

∫
d3q

2ω

(
p

p · q

)2

= ln
(

2∆ε

λ

)
− 1;

1
2π

∫
d3q

2ω

(
pe

pe · q

)2

= ln
(

2∆ε

λ

)
− 1

2
Le;

1
2π

∫
d3q

2ω

2(p · pe)
(p · q)(pe · q)

= Le ln
(

2∆ε

λ

)

− π2

6
− 1

4
L2

e. (56)

From them we obtain (16).
Consider now radiative corrections that arise from the

emission of virtual photons (excluding SD virtual pho-
tons).

Feynman graphs containing a self-energy insertion to
the positron and kaon Green functions (Fig. 1b,c) can be
taken into account by introducing the wave function renor-
malization constants Ze and ZK : M0 → M0(ZKZe)1/2.
We use the expression for Ze given in the textbooks [16];
the expression for ZK is given in [15]. The result is (17).

Now consider the Feynman graph in which a virtual
photon is emitted by a kaon and absorbed by a positron
or by a W -boson in the intermediate state (Fig. 1d,e,f).
This long distance contribution is calculated using a phe-
nomenological model with point-like mesons as the rel-
evant degrees of freedom. To calculate the contribution
from the region |k|2 < Λ2 (Λ is the ultraviolet cutoff) we
use the following expressions for the loop momenta scalar,
vector, and tensor integrals:

Re
∫

d4k

iπ2

1, kµ, k2

(k2 − λ2)((k − p)2 − M2)((k − pe)2 − m2
e)

= I, Iµ, J. (57)

A standard calculation yields

I =
−1

yM2

{
1
2

ln
M2

λ2 Le + ln2 y + Li2(1 − y) − 1
4

ln2 re

}
;

Iµ =
−1

yM2

{−y ln y

1 − y
pµ + pµ

e

(
y ln y

1 − y
+ Le

)}
;

J = LΛ +
y ln y

1 − y
+ 1, (58)

where LΛ = ln(Λ2/M2) and we omitted terms of the order
of O(m2

e/M
2). As a result we obtain∫

d4k

iπ2

(1/4)Sppν(p + p′)(−p̂e + k̂)(2p̂ − k̂)pe(p + p′)
(k2 − λ2)((k − p)2 − M2)((k − pe)2 − m2

e)
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= 2M4a0(y, z)
{

−LΛ − 1
2

ln2 re − 2Le + ln
M2

λ2 Le − 1

+ 2 ln2 y + 2 ln y + 2Li2(1 − y)
}

. (59)

In a series of papers [7] Sirlin has conducted a detailed
analysis of the UV behavior of the amplitudes of processes
with hadrons in one-loop level. He showed that they are
UV finite (if considered on the quark level), but the effec-
tive cutoff scale on the loop momenta is of the order MW .
For this reason we choose

LΛ = ln
M2

W

M2 .

The sum δS + δC + δPLM yields (19).

Appendix B

The matrix element of the radiative Ke3 decay

K+(p) → π0(p′) + e+(pe) + ν(pν) + γ(q), (60)

with terms up to O(p2) in CHPT [3–6] has the form

Mhard =
GF

2
f+V ∗

us

√
4παū(pν)Qhard

µ (1 + γ5)v(pe)εµ(q),

(61)
where

Qhard
µ = Qe

µ + Qπ
µ + QSD

µ = QIB
µ + QSD

µ ;

QIB
µ = (p̂ + p̂′)

[
(−p̂e − q̂ + me)γµ

2peq
+

pµ

pq

]
;

QSD
µ = γνRµν , (62)

where the tensor Rµν describes (see (4.17) in [4]) the
structure-dependent emission (Fig. 1c). We have

Rµν = gµν − qνpµ

pq
. (63)

Terms singular at χ = 2peq → 0 which provide a con-
tribution containing a large logarithm Le arise only from
Qe

µ. To extract the corresponding terms we introduce the
4-vector v = (x/y)pe − q, and x is the energy fraction of
the photon (9). Note that v → 0 when χ → 0. Separating
leading and non-leading terms and letting f+(t) = 1, i.e.
neglecting the form factor’s momentum dependence, we
obtain

δH =
dΓ hard

dΓ0
=

α

2πa0(y, z)

∫
dx

x

∫
dOγ

2π
T,

x > y∆, (64)

where

T =
x2

8

∑
spins

∣∣∣ū(pν)
(
Qhard

IB + Qhard
SD

)
(1 + γ5)v(pe)

∣∣∣2

=
ya0(x + y, z)

x + y

[
y2 + (x + y)2

y2(1 − βeCe)
− 2

(1 − βe)(x + y)
y(1 − βeCe)2

]

− ya0(x + y, z)
x + y

+ P. (65)

The quantity P contains some non-leading contributions
from the IB part and the ones that arise from the struc-
ture-dependent part:

P =
(

peq

M2

(
pνq

M2 + z − 2y

x + y
(1 − x − y)

)

+
p′v
M2

y(2 − x − y)
x + y

)

×
(

xM2

4ypeq
(y2 + (x + y)2) − 1

)

− M2x2

8peq

(
Tv +

2
x

T1v

)
− x2

8
(TRR + 2TR) , (66)

with

Tv =
1

4M4 Sp(p̂ + p̂′)p̂ν(p̂ + p̂′)v̂;

T1v =
1

4M6 Sp(p̂ + p̂′)p̂ν(p̂ + p̂′)v̂p̂p̂e;

TRR = RµλRµσ
1

4M2 Spp̂νγλp̂eγσ; (67)

TR = Rµλ
1

4M2 Spp̂ν(p̂ + p̂′)
[
pµ

pq
− (p̂e + q̂)γµ

χ

]
p̂eγλ.

To calculate these traces we use the following expressions
for the scalar products of the 4-momenta (in units M):

p2 = 1, q2 = 0, p2
ν = 0, p

′2 = rπ, p2
e = 0,

ppe =
y

2
,

pp′ =
z

2
, pq =

x

2
, ppν =

1
2

(2 − y − z − x) ,

p′pν =
1
2

(1 − x − y − rπ + Ae) ,

p′q =
1
2

(x − Ae − Aν) ,

p′pe =
1
2

(y − R(z) + Aν) , pνq =
1
2
Aν , peq =

1
2
Ae,

pepν =
1
2

(R(z) − Ae − Aν) , pv = 0, pev = −1
2
Ae,

qv =
1
2

x

y
Ae, p′v =

1
2

(
x + y

y
Ãν + Ae

)
,

pνv = − 1
2y

(
xAe + (x + y)Ãν

)
,

Ãν = Aν − x

x + y
R(z).

Three terms in the r.h.s. of (65) have a completely different
behavior.

The first one corresponds to the kinematic region of
collinear emission, when a photon is emitted along the
positron’s momentum. The relevant phase volume has es-
sentially a three-particle form:

(dφ4)coll
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=
(

d3pe

2εe

d3q

2ω

d3p′

2ε′ d4pνδ(p2
ν)

× δ4(p − pe − pν − p′ − q)
)coll

= M4 π2

64
βπzdzydyxdxdOγdCeπ

× δ

(
1 − x − y − z + rπ +

x + y

y

zy

2
(1 − βπCeπ) +

2peq

M2

)

=
y

x + y
M4 π2

32
dOγxdxdydz. (68)

The limits of the photon’s energy fraction variation are
y∆ < x < b(z) − y. The upper limit is imposed by the
Born structure of the width in this kinematical region.

The second term corresponds to the contribution from
emission by a kaon. The relevant kinematics is isotropic.

The kinematics of radiative kaon decay and the com-
parison of our and Ginsberg’s approaches is given in Ap-
pendix F.

The third term corresponds to the rest of the contri-
butions which contain neither collinear nor infrared sin-
gularities.

Performing the integration over the photon’s phase
volume provided y, z are in the D region, we obtain∫

dx

x

∫
dOγ

2π
T

=

b(z)−y∫
y∆

dx

x

y2

(y + x)2
a0(y + x, z)

×
[
y2 + (y + x)2

y2 (Le − 1) +
x2

y2

]
(69)

− 2

b(z)−y∫
y∆

dx

x

[
a0(y, z) + x

(
R(z)
x + y

− y

)]
+

b(z)−y∫
0

dxJ ,

we obtain (27) with

Rphot1D =

b(z)−y∫
0

dx

(
R(z)
x + y

− y

)

= R(z) ln
b(z)
y

− y(b(z) − y); (70)

(R(z) + y(2 − z)) ln
b(z)
y

+
1
2
Rphot

2D(y, z)

=

b(z)−y∫
0

dx
xa0(y + x, z)

(y + x)2

= − (R(z) + y(2 − z)) ln
b(z)
y

(71)

+
1
2

(b(z) − y)
(

2
R(z)
b(z)

+ 4 − 2z − b(z) + y

)
,

and
J (x, y, z) =

1
x

∫
dOγ

2π
P. (72)

One can check that the sum of RC arising from hard,
soft and virtual photons does not depend on the auxiliary
parameter ∆.

We note that the leading contribution from the hard
part of the photon spectrum can be reproduced using the
method of quasi-real electrons [10]1.

Now we concentrate on the contribution of the third
term in the r.h.s. of (65).

To perform the integration over the phase volume of
the final states it is convenient to use the following pa-
rameterization (see Appendix F):

dφ4 =
d3p′d3ped3pνd3q

2ε′2Ee2εν2ω
δ4 (p − p′ − pe − pν − q)

= βπ
π2

16
M4dydzxdx

dCedCπ√
D

, (73)

with

D = β2
π(1 − C2 − C2

π − C2
e + 2CCπCe),

βπ =

√
1 − 4rπ

z2 , (74)

C = cos(�pe, �p
′), Ce = cos(�q, �pe), Cπ = cos(�q, �p′).

The neutrino on-mass shell (NMS) condition provides the
relation

1 − βπC =
2
yz

[
x + y + z − 1 − rπ − xz

2
(1 − βπCπ)

− xy

2
(1 − Ce)

]
. (75)

For the aim of further integration of P over the angular
variables we put it in the form

P = xP1
Ãν

Ae
+ xP2 + P3Ae + P4Aν + P5AνAe,

Ae =
xy

2
(1 − Ce) ,

Aν = x − Ae − xz

2
(1 − βπCπ) , (76)

and

P1 =
y

2
(1 − x − y) ;

P2 =
R(z)
x + y

+
1
2
(
z(2x + 3y + 1) + 2x2 + 4xy

+ 3y2 − 2x − 3y − 2
)
;

P3 = 1 − z − y − 1
2
x (x + y + z) ;

P4 = −1 + x + y +
1
2
xy; P5 = −1. (77)

1 The formula (10) in [10] should read

dΓb =
2ε′d3σ0b

d3p′

∣
∣
∣
∣
�p′=�p3+�k

dW�p3+�k(k)
d3p3

2ε3
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Angular integration can be performed explicitly; we
have ∫

βπdCπ

π
√

D
=

y√
A

,∫
βπCπdCπ

π
√

D
=

y(x + y − yt)
zβπA3/2 (78)

× [2R(z) − (x + y)(2 − z) + xyt] ,

with
A = (x + y)2 − 2xyt, t = 1 − Ce. (79)

Performing the integration over Cπ we have

1
x

∫
dCπβπ

π
√

D
P =

2y

A3/2

(
(y − x)

(
1 − z

2
− R

x + y

)

− 1
2
y (x + y − xt)

)
P1

+
y

A1/2

(
P2 +

y

2
tP3

)
+

(
P4 +

xy

2
tP5

){ y

A1/2

(
1 − z

2
− y

2
t
)

(80)

+
y

A3/2 (x + y − yt)
(
R − (x + y)

(
1 − z

2

)
+

xy

2
t
)}

.

The following integrals are helpful in integrating the above
expression. We define

Im
n =

∫ 2

0

dttm√
An

, m = 0, 1, 2, 3; n = 1, 3. (81)

Then

I0
1 =

4
σ

, I1
1 =

8(x + y + σ)
3σ2 ,

I2
1 =

16
15σ3

(
3σ2 + 3(x + y)ρ + 5(x + y)2

)
,

I0
3 =

4
ρσ(x + y)

, I1
3 =

8
ρσ2 ,

I2
3 =

16
3ρσ3 (2(x + y) + σ) ,

I3
3 =

32
5ρσ4

(
σ2 + 2(x + y)ρ + 4(x + y)2

)
, (82)

where ρ = |x − y| and σ = x + y + ρ.
The first term in dΓ hard together with the leading con-

tributions from virtual and soft real photons was given in
the form required by the RG approach (36).

The non-leading contributions, δhard from hard photon
emission, include SD emission and IB of point-like mesons
as well as the interference terms. It is free from infrared
and mass singularities and given above (27) with

J (x, y, z) = P1R1 + P2yI0
1 + P3

y2

2
I1
1 +

y

2
P4R4

+
xy2

4
P5R5, (83)

and

R1 =
y

x + y

× (y − x) ((2 − z)(x + y) − 2R(z)) I0
3

− y2((x + y)I0
3 − xI1

3 ),
R4 = (2 − z) I0

1 − yI1
1

+ (2R(z) − (x + y)(2 − z))((x + y)I0
3 − yI1

3 )
+ xy((x + y)I1

3 − yI2
3 ),

R5 = (2 − z) I1
1 − yI2

1

+ (2R(z) − (x + y)(2 − z))((x + y)I1
3 − yI2

3 )
+ xy((x + y)I2

3 − yI3
3 ).

Appendix C

The contribution to δhard from SD emission has the form

δhard
SD =

α

2πa0(y, z)

b(z)∫
0

dxJSD(x, y, z), (84)

where

JSD(x, y, z) = Q1R1 + yQ2I
0
1 +

y2

2
Q3I

1
1 +

y

2
Q4R4

+
xy2

4
Q5R5, (85)

with Ri given in Appendix B and

Q1 = −1
4
y (x + y) ,

Q2 =
1
4

[2x(x + 2y + z − 2) + 3y(y + z − 2)] ,

Q3 = −1
8
[−8 + (z + y)(4 + 3x) − 2x + 3x2] ,

Q4 =
1
8

[4y + 4x + 3xy] , Q5 = −3
4
. (86)

The contribution to the total width has the form

δSD =
α

2π

∫ ∫
dydz

(
1 +

λ+

rπ
R(z)

)2 N∫
0

dxJSD(x, y, z)

∫ ∫
dydza0(y, z)

(
1 +

λ+

rπ
R(z)

)2 .

(87)
Numerical estimation gives

δSD = −0.005. (88)

Appendix D

The function Ψ , defined by

Ψ(y, z) =

b(z)∫
b−(z)

dt

t
a0(t, z)P (1)

(y

t

)
, (89)
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contains a restriction on the domain of integration, namely
t exceeding y or being equal to it, which is implied by the
kernel P (1)(y/t). Explicit calculations give

Ψ<(y, z) =

b(z)∫
b−(z)

dt

t
a0(t, z)

y2 + t2

t(t − y)

= [R(z) − y(2 − z)] ln
b(z)

b−(z)

+ 2a0(y, z) ln
b(z) − y

b−(z) − y

+
1
2
(b(z)2 − b−(z)2),

2
√

re < y < 1 − √
rπ, Ψ<(y, z) = 0,

y > 1 − √
rπ, (90)

and

Ψ>(y, z) =

b(z)∫
y

dt

t
a0(t, z)P (1)

(y

t

)

= a0(y, z)
[
2 ln

b(z) − y

y
+

3
2

]

− 1
2
(b(z)2 − y2) + (b(z) − y)(2 − y − z + b−(z))

+ [R(z) − y(2 − z)] ln
b(z)
y

. (91)

One can convince oneself of the validity of the relations

j0(y) =

c(y)∫
2
√

rπ

dzΨ<(y, z) +

1+rπ∫
c(y)

dzΨ>(y, z) (92)

and
b−(z)∫
0

dyΨ<(y, z) +

b(z)∫
b−(z)

dyΨ>(y, z) = 0. (93)

The last relation demonstrates the KLN cancellation for
the pion spectrum obtained by integration of the correc-
tions over y in the interval 0 < y < b(z).

The explicit expressions for j1(y) and j2(y) are (for
j0(y) see (43))

j1(y) =
y3(1 − rπ − y)3

3(1 − y)2

(
2 ln

1 − rπ − y

y
+

3
2

)

+
r2
π

3(1 − y)2
[
3(1 − y)(1 + y2)

+ rπ(y3 + 3y − 2)
]
ln

1 − y

rπ

− 1 − rπ − y

36(1 − y)2
[
(1 − y)2

(
43y3 − 15y2 − 3y − 1

+ rπ(83y2 + 26y + 11) + 3r3
π

)

+ r2
π(31y3 − 15y2 − 39y + 47)

]
, (94)

j2(y) =
y4(1 − rπ − y)4

12(1 − y)3

(
2 ln

1 − rπ − y

y
+

3
2

)

+
r2
π

12(1 − y)3
ln

1 − y

rπ

[
6(1 + y2)(1 − y)2

− 4rπ(1 − y)(2y3 − y2 + 4y − 3)

+ r2
π(y4 + 6y2 − 8y + 3)

]
+

1 − rπ − y

720(1 − y)3

×
[

− (1 − y)3(247y4 − 88y3 − 28y2 − 8y − 3)

− rπ(1 − y)3(733y3 + 341y2 + 129y + 57)
− r2

π(1 − y)
× (707y4 − 808y3 + 212y2 − 408y + 717)
+ r3

π(173y4 − 72y3 − 492y2 + 1048y − 477)

− 12r4
π(1 − y)3

]
. (95)

Appendix E

Now follws a collection of the relevant formulae.
The Dalitz-plot distribution in the region D:

1
CSEW

dΓ

dydz

=
(

1 + λ+
t

m2
π

)2
(

a0(y, z)

+
α

π

[
1
2
(Le − 1)Ψ>(y, z) + a0(y, z)Z1 +

1
2
Z2

])
,

Z1 =
3
4

− π2

6
− 3

2
ln y − ln((b(z) − y)/y)

− Li2(1 − y). (96)

The function Z2 is defined in (28). The correction to the
total width (we include the contribution of the region out-
side the region D), Γ = Γ0(1 + δ):

1 + δ = SEW +
α

π

1∫ ∫
dzdya0(y, z)

(
1 +

λ+

rπ
R(z)

)2




1−rπ∫
0

I(y) ln ydy +

1+rπ∫
2
√

rπ

dz

(
1 +

λ+

rπ
R(z)

)2




b−(z)∫
0

dy

[
−a0(y, z) ln

b(z) − y

b−(z) − y
+ (1/2)Z̃2(y, z)

]

+

b(z)∫
b−(z)

dy[a0(y, z)Z1 + (1/2)Z2]




 , (97)
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with

Z̃2(y, z) = Rphot2A(y, z) − 2Rphot1A(y, z)

+
∫ b(z)−y

b−(z)−y

dxJ (x, y, z);

Rphot1A(y, z) = R(z) ln
b(z)

b−(z)
− y(b(z) − b−(z))

Rphot2A(y, z) =
∫ b(z)−y

b−(z)−y

dxx

(x + y)2
a0(x + y, z)

= (b(z) − b−(z))
(
1 − z

2
+ 2y

)
− (y(2 − z) + R(z)) ln

b(z)
b−(z)

. (98)

The expression in big square brackets on the right-hand
side of (94) can be put in the form

1+rπ∫
2
√

rπ

φ1(z)dz =

1−rπ∫
2
√

re

f1(y)dy = −0.035, (99)

which results in δ = 0.02. For the aim of comparison with
Ginsberg’s result we must put here

λ+ = 0, I(y) = j0(y), MW = Mp; (100)

as was mentioned above we have reasonable agreement
with the Ginsberg results. For the inclusive set-up of the
experiment (the energy fraction of the positron is not mea-
sured) we have for the pion energy spectrum given above
(41). When we restrict ourselves only by the region D the
spectrum becomes dependent on ln(1/re):

1
CSEW

dΓ

dz

=


φ0(z) +

α

π


(1/2)P (z)(ln(1/re) − 1)

+

b(z)∫
b−(z)

dy

[
Ψ>(y, z) ln y + a0(y, z)Z1 +

1
2
Z2

]



×
(

1 +
λ+

rπ
R(z)

)2

, (101)

with

P (z) =
1
6
b−(z)2(3b(z) + b−(z)) ln

b(z)
b−(z)

+
1
3
(b(z) − b−(z))3 ln

b(z) − b−(z)
b(z)

− 1
6
b−(z)(b(z) − b−(z))(3b−(z) + b(z)). (102)

Appendix F

Our approach to the study of the radiative kaon decay has
an advantage compared to the one used by Ginsberg – it
has a simple interpretation of electron mass singularities
based on the Drell–Yan picture. The approach of [2] to
the study of non-collinear kinematics is more transparent
than ours. We remind the reader of some some topics of
[2]. One can introduce the missing mass square variable

l = (pν + k)2/M2 = Aν

= (M − Eπ − Ee)2/M2 − (�pπ + �pe)2/M2; (103)

the limits of this quantity variation at fixed y, z are put by
the last term: for collinear or anticollinear kinematics of
pion and positron 3-momenta. Being expressed in terms
of y, z they are (we consider the general point of a Dalitz
plot and omit the positron mass dependence):

0 < l < b−(z)(b(z) − y), (104)

for the y, z in the D region and

b(z)(b−(z) − y) < l < b−(z)(b(z) − y), (105)

for the case when they are in the region A outside D:

0 < y < b−(z), 2
√

rπ < z < 1 + rπ. (106)

For our approach with separating the case of soft and hard
photon emission we must modify the lower bound for l in
the region D. This can be done using another representa-
tion of l:

l = x[1 − (y/2)(1 − Ce) − (z/2)(1 − βCπ)], (107)

with Ce, Cπ the cosine of the angles between the photon
3-momentum and the positron and pion ones, and β =
(1−m2/E2

π)1/2 is the pion velocity. The maximum of this
quantity is b(z). Taking this into account we obtain for
the region of the hard photon

x > 2∆ε/M = y∆, ∆ = ∆ε/Ee << 1, (108)

for the region D:

y∆ < x < b(z) − y,

yb(z)∆ < l < b−(z)(b(z) − y); (109)

and for region A:

b−(z) − y < x < b(z) − y,

b(z)(b−(z) − y) < l < b−(z)(b(z) − y). (110)

In particular for the collinear case we must choose Ce =
1; Cπ = −1, which corresponds to x + y < b(z). Let us
infer this condition using the NMS condition:

(Pk − pe − pπ − k)2/M2

= R(z) − x − y + (xy/2)(1 − Ce)
+ (xz/2)(1 − βCπ) + (yz/2)(1 − βCeπ) = 0. (111)
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In the collinear case we have Ce = 1;Cπ = Ceπ. From the
NMS condition we obtain 1−βCπ = (2/z(x+ y))(x+ y −
R(z)). Using this value we obtain lcoll = R(z)x/(x+y). Us-
ing further the relation R(z) = b(z)b−(z) we obtain again
x < b(z) − y in the case of emission along the positron.

Comparing the phase volumes in the general case cal-
culated in our approach using the NMS condition with the
approach of [2], we obtain the relation∫

xdx

∫
dOγ

4π
=

∫
dl

∫
dγ, (112)∫

dγ =
∫

d3pν

Eν

d3k

k0

δ4(P − pν − k)
2π

.

The non-leading contribution arising from hard photon
emission considered above is

IIB =
∫

dx

x

∫
dOγ

4π
PIB, (113)

with

PIB = xG1
Ãν

Ae
+ xG2 + G3Ae + G4Aν + G5AeAν ,

G1 =
y

4
(2 − y − x),

G2 =
R(z)

2(x + y)
+

x2

2
+

1
2
x(z + 2y)

+
1
4
(2z + 3y(y + z)) − 1;

G3 = −1
8
x2 − 1

8
x(2 + z + y) − 1

2
(y + z);

G4 =
1
8
x(4 + y) +

1
8
y − 1;

G5 = −1
4

(114)

(note that Gi + Qi = Pi; see Appendix B and C) can be
transformed to the form

IIB = (1/4)
∫

dl

[
4 − 2y − 4z − (1/4)R(z) + (1/4)l

+ y ln
(R(z) − l)2

l
− 2 ln

y2R(z)2

l(l + y(2 − z))
+ [z + (3/2)y(y + z) − 2 + (1/4)l(4 + y)]I10

− (1/2)I1−1 − ((1/2)l + y + z)I2−1 + Iz

]
. (115)

Here we use the list of integrals obtained in [2]:

Imn =
∫

dγ
1

(kPK/M2)m(kpe/M2)n
;

I10 =
2
s

ln
2 − y − z + s

2 − y − z − s
; I20 = 4/l; I00 = 1;

I−1,0 = (2 − y − z)/2; I11 =
4
yl

ln
y2

l
;

I01 =
2

R(z) − l
ln

(R(z) − l)2

lre
;

I1−1 =
R(z)(2 − y − z) − (2 + y − z)l

s2

+
2l(y(2 − y − z) − 2R(z) + 2l)

s3

× ln
2 − y − z + s

2 − y − z − s
;

I2−1 =
2(y(2 − y − z) + 2l − 2R(z))

s2

+
R(z)(2 − y − z) − (2 + y − z)l

s3

× ln
2 − y − z + s

2 − y − z − s
,

s =
√

(2 − y − z)2 − 4l. (116)

Besides these we need two additional ones:

Ie =
∫

dγ
1

(kpe/M2)(2(kPK/M2) + y)

=
2

yR(z)
ln

y2R(z)2

l(l + y(2 − z))re
;

Iz =
∫

dγ
1

(kPK/M2)(2(kPK/M2) + y)

=
4
ys

ln
2l + ys + y(2 − y − z)
2l + ys − y(2 − y − z)

. (117)

One can see the cancellation of mass singularities (terms
containing ln(1/re)) in the expression IIB.

Numerical calculations are in agreement (within a few
percent) with this and the expressions given above.
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